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SUMMARY

This paper presents a numerical method in which the Kalman filter and the extended Kalman filter
techniques are applied to the ground temperature control analysis with the finite element method. The
purpose of this research is to identify the unknown parameters that are involved in the physical models
and to estimate the temperature which can not be observed in a direct manner. In order to justify the
present method, numerical computations are carried out, which ensures the adaptability of the method.
Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is desirable that the lawns in sports stadiums are kept beautifully green. Sometimes,
however, they are damaged by a change in temperature from daytime to night-time. The
maintenance and management of lawns are not easy tasks, especially in the Japanese climate.
Therefore, agricultural chemicals are sprinkled in large quantities on the sports fields in order
to prevent the harmful insects that infect the lawns, and to keep the lawns green. However,
pollution of the environment results because the agricultural chemicals eventually flow to the
surrounding rivers and underground water.

To solve this serious social problem, an underground temperature control system has been
developed. The temperature near the surface is controlled by flowing warm or cold water
through pipes buried in the ground. In order to apply this control system to actual problems,
several analyses and experiments for the ground temperature control system have been
developed. Some papers [1–9] have been presented about the construction of the ground
temperature control system being applied to the maintenance and management of the lawn.
Adaptive and active controls include the Bang–Bang control, which involves turning the
control system on and off, optimal control analysis by the Sakawa–Shindo method or the
conjugate gradient method, predictive control, and real-time control based on fuzzy control
theory. Considering the costs for operation of the system, it is difficult to apply continuous
control of temperature at underground control points. Therefore, for practical uses, it is worth
considering the possibility of Bang–Bang control.

* Correspondence to: Department of Civil Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo
112-8551, Japan.

CCC 0271–2091/99/170261–14$17.50
Copyright © 1999 John Wiley & Sons, Ltd.



K. SUMA AND M. KAWAHARA262

There are still several problems to be solved, one of which is the treatment of the boundary
conditions. The boundary conditions for the ground temperature control system are important.
In past studies [1–9], to apply the control theory to the practical problem, the temperature of
the ground surface was defined as a known value and used for the boundary condition in the
computation. It has been treated that the temperature on the boundary is always known, in
other words, the outside boundary values could be observed directly as a complete time
function. Considering the control system for practical use, however, the observation area is
restricted because of the many athletic activities on the field of the stadium. Therefore, to
operate the system practically, the boundary condition of the ground surface must be
determined within the limited measurement conditions. In the conventional way of treatment
for the boundary condition, the Dirichlet condition in the computation has been adopted.
However, in order to exactly simulate the phenomenon of heat transfer on the boundary, it is
necessary to use heat flux. Introducing heat flux as a Neumann boundary condition, the
treatment of solar radiation can be taken into account in the computation. In this case, it is
necessary to identify the unknown parameters, such as the heat transfer coefficient and the
solar radiation absorptivity, because the model of the heat flux includes these parameters. The
reason why the Kalman filter and the extended Kalman filter [10] are applied in the present
paper is to treat appropriately errors that exist in the observation and also in the discretization.
In the observation, the data obtained include the instrumental and artificial errors. These
errors are defined as observation noise. Therefore, it is desirable that observation data are not
used directly to simulate the heat conduction. Thus, it is also necessary to perform analyses
considering observation noise so as to remove observation errors. In the basic equation and the
discretization, the errors also exist. These errors are defined as system noise. It is necessary to
introduce the numerical procedure to consider these errors. The purpose of this study is to
estimate the boundary condition for the calculation of the ground temperature control system
by identifying the parameters.

2. HEAT CONDUCTION ANALYSIS

To obtain temperature, u, by computation, the unsteady thermal conduction equation is
introduced as follows:

rCp
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(t
−b

�(2u

(x2+
(2u

(y2

�
=Q, (1)

where r is the density, Cp is the specific heat, b is the thermal conductivity, t is time, x and
y are co-ordinates in space and Q is the heat production respectively. The basic equation (1)
is accompanied by the following boundary and initial conditions:

Dirichlet boundary condition:

Newmann boundary condition:

Initial condition:

u=u.

q=b
�(u
(x

l+
(u

(y
m
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= q̂

u(t0)=u. 0

on S1,

on S2,

in V,

where the caret denotes the value specified on the boundary, the whole boundary S consists of
boundaries S1 and S2, l and m are the direction cosine of the outward unit normal vector of
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the boundary S, V is the domain to be analyzed and q denotes heat flux. In this paper, heat
flux, q, is assumed to consist of q̂a and q̂g as follows:

q̂= q̂a+ q̂g, (2)

q̂a=a(u−uc), (3)

q̂g= −gg, (4)

where a is the heat transfer coefficient, g is the solar radiation absorptivity, uc is the open air
temperature and g is the solar radiation. The basic equation (1) is discretized by the finite
element method in space and by the Crank–Nicolson method in time based on the above
boundary and initial conditions. The finite element matrix equivalent equation can be obtained
as follows:�

[M ]+
Dt
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�
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and where Dt is the time increment, subscripted k are the time iterations. To compute the
temperature distribution u by Equation (5) it is necessary to know the coefficients a and g and
boundary condition u. .

3. KALMAN FILTER

The Kalman filter consists of system and observation equations:

System equation:

xk+1=Fkxk+Guk ; (6)

Obser6ation equation:

yk=Hkxk+6k, (7)

where xk is the state value, which can not be observed directly; yk is the observed value; Fk is
the state transition matrix that is obtained by the coefficients of the finite element equation; Hk

is the observation matrix, which has information about the placement of observation points;
G is the driving matrix, which determines nodal points at which system noise uk is taken into
account; and 6k is the observation noise respectively. The noises uk and 6k are assumed white
noises, which are independent of each other and the averages are 0, i.e.

E{uk}=0, cov{uk, uj}=E{ukuj
T}=Qdkj, (8)

E{uk}=0, cov{uk, uj}=E{ukuj
T}=Rdkj, (9)
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cov{uk, uj}=0, (10)

dij=
!1

0
(i= j )
(i" j )

, (11)

where E{ } is the expectation operator and d is the Kronecker delta.
To use the Kalman filtering technique, the following three conditions are postulated:

(i) The optimally estimated value x̂k is the conditional average value on the condition that
the observation data Yk= (y0, y1, . . . , yk) are given:

x̂k=E{xk �Yk}. (12)

Therefore, the estimation error covariance Pk is represented as follows:

Pk=cov{xk �Yk}=E{(xk− x̂k)(xk− x̂k)T}. (13)

(ii) The estimated value x*k is the conditional average value on condition that observation
data Yk= (y0, y1, . . . , yk−1) are given:

x*k =E{xk �Yk−1}. (14)

Therefore, the prediction error covariance Gk is represented as follows:

Gk=cov{xk �Yk−1}=E{(xk−x*k )(xk−x*k )T}. (15)

(iii) All processes of the Kalman filter complies with normal distribution, and the probabil-
ity density function of the normal distribution is shown as:

p(x)=
1

(2p)1/2�Pk �1/2 exp
!

−
1
2

(x−m)T�Pk �−1(x−m)
"

, (16)

where x is the probabilistic variable, m is the average value and Pk is covariance matrix
respectively.

The probability density function of each condition is written as follows:

p(yk �xk)=N(Hxk, Rk), (17)

p(yk �Yk−1)=N(Hxk*, HGk*HT+Rk), (18)

p(xk �Yk−1)=N(x*k, Gk), (19)

where N( ) denotes normal distribution. Using the Bayes rule,

p(xk �Yk)=
p(yk �xk)p(xk �Yk−1)

p(yk �Yk−1)
, (20)

and employing all the above postulations, Equations (12), (13) and (15) are rewritten using the
probability density function of the normal distribution. The estimated error covariance Pk, the
prediction error covariance Gk and the optimally estimated value x̂k can be expressed as
follows:

x̂k=Fkx̂k−1+Kk(yk−HkFkx̂k−1), (21)

Pk= (I−KkHk)Gk, (22)

Gk+1=FkPkFk
T+GkQkGk

T, (23)
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where Kk is called as the Kalman-gain, which expresses the weight of the observation values at
observation points against all other nodal points, and can be obtained as

Kk=GkHk
T(Rk+HkGkHk

T)−1. (24)

The algorithm of the Kalman filter can be summarized as follows:

(1) G0=V0, x0= x̂0,

(2) Kk=GkHk
T(Rk+HkGkHk

T)−1,

(3) Pk= (I−KkHk)Gk,

(4) Gk+1=FkPkFk
T+GkQkGk

T,

(5) Kk−Kk−1\e, go to (2),

(6) x̂k=Fkx̂k−1+Kk(yk−HkFkx̂k−1).

The Kalman filtering algorithm consists of two parts: the first part (1)–(5), the second part (6).
The first part is called the ‘on-line procedure’ and the second part is called the ‘off-line
procedure’. In the off-line part, the calculation of the covariance matrix and the Kalman-gain
matrix are iterated until the Kalman-gain converges. In the on-line part, the state vector is
estimated using the Kalman-gain. The estimated value is updated gradually so that the
renewed observation data can be included in the most useful way.

4. EXTENDED KALMAN FILTER

The extended Kalman filter, which is the linearized non-linear filter around the current mean
and covariance, consists of system and observation equations as

System equations:

xk+1= fk(xk)+uk ; (25)

Obser6ation equation:

yk=hk(xk)+6k, (26)

where state value xk is

xk= (uag)T, (27)

which are unknown parameters, and yk denotes the observation vector, fk(xk), hk(xk) are
non-linear functions of xk. The system and observation noises are uk and 6k respectively. The
heat transfer coefficient ak and solar radiation absorptivity gk are the discretized values at the
time stage k. Because the non-linear functions in Equation (25) are continuous, Equation (25)
can be linearized around the current estimate x̂k using the Taylor series expansion as

fk(xk)= fk(x̂k)+Fk(xk− x̂k)+ · · · . (28)

In Equation (28), Fk is
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Neglecting the higher-order terms in Equation (28), the linearized equation is obtained as
follows:

xk+1=Fkxk+wk+ fk(x̂k)−Fkx̂k, (30)

where x̂k is the conditional average value. Therefore, Equation (30) can be rewritten as

xk+1=Fkxk+wk. (31)

Equation (31) is almost in the same form as Equation (6), but Fk in Equation (31) is variable
for each iteration cycle because Fk includes unknown parameters ak and gk. Therefore, it is
impossible to perform the calculation Fk by off-line computing.

The algorithm of the extended Kalman filter can be summarized as follows:

(1) G0=V0, x0= x̂0,

(2) Kk=GkHk
T(Rk+HkGkHk

T)−1,

(3) Pk= (I−KkHk)Gk,

(4) x̂k=Fkx̂k−1+Kk(yk−HkFkx̂k−1),

(5) Gk+1=FkPkFk
T+GkQkGk

T,

(6) Go to (2).

5. AR-MODEL

The state space model corresponding to a time series model is considered. The time series yk

obeys the autoregressive model as follows:

yk= %
m

i=1

aiyk− i+wk. (32)

The observation model can be obtained as follows by defining H= [I 0 · · · 0] because the first
component in the state variable xk is yk as follows:

yk=Hxk, (33)
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therefore, xk and xk−1 are related as follows, which is the same type of equation as Equation
(6):

xk=Fkxk−1+Gwk, (34)

where F and G can be expressed as the following m×m matrix and m dimensional vector

Fk=Ã
Ã

Ã

Æ

È
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I
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· · ·

· · ·

I

am

0

Ã
Ã

Ã
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É
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Ã

Ã
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0
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0

Ã
Ã

Ã

Ç

É
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The algorithm of the Kalman filter for prediction is as follows:

One-step prediction:

x*k =Fkx̂k−1, (35)

Gk=FkPk−1Fk
T+GkQkGk

T. (36)

Filtering:

Kk=GkHk
T(Rk+HkGkHk

T)−1, (37)

x̂k=x*k +Kk(yk−Hkx*k ), (38)

Pk= (I−KkHk)Gk. (39)

The time series yk=yk+1 is approved formally because the observed value yk+1 cannot be
observed in the kth time step. Now, it is postulated as

x̂k+1=x*k+1, (40)

Pk+1=Gk+1. (41)

Two-step and long-term prediction are represented as follows:

Two-step prediction:

x*k+2=Fk+2x̂k+1, (42)

Gk+2=Fk+2Gk+1Fk+2
T +Gk+2Qk+2Gk+2

T . (43)

Long-term prediction:

x*k+ j=Fk+ jx̂k+ j−1, (44)

Gk+ j=Fk+ jGk+ j−1Fk+ j
T +Gk+ jQk+ jGk+ j

T , j\2. (45)

In order to estimate the degree of the autoregression, the Akaike information criterion (AIC)
is used as follows:

AIC(J)=N(log 2pŝ2(J)+1)+2(J+1) (J=0, 1, . . . , M). (46)

AIC(0), . . . , AIC(m), . . . , AIC(M) are calculated and the optimal degree for the autoregres-
sion m is found by using the AIC. The degree m that minimizes the AIC(J) is the optimal
degree for the autoregression, and M is the maximum degree.
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Figure 1. Experimental site in Yokohama.

6. EXPERIMENTAL SITE

Figure 1 presents the experimental site in Yokohama city. Experimental observations are
performed in this field for the duration February–June, 1997. The purpose of this experiment
is to control underground temperature to be the appropriate condition for the lawn by flowing
hot water (37°C) in pipes buried at −30 cm. Thermocouples were used to measure the
temperature of the ground at −3, −5, −10, −15 and −30 cm respectively. In addition,
open air temperature, solar radiation, humidity and rainfall are observed every 15 min.

The objective points of control are defined at −5 cm, which corresponds to the roots of
lawn. In this analysis, the ground surface boundary condition is defined at −3 cm deep using
the Dirichlet condition. Good agreement was obtained in the results of this experiment. The
lawn in the controlled area was kept green compared with that in the non-controlled area.
Figure 2 shows the condition of the lawn, the left side is the controlled area and the right side
is the non-controlled area. Some parts of the lawn in the non-controlled area were dead. For
the observation of temperature, it is confirmed that underground temperature in the controlled
area, where hot water flowed in buried pipes, was kept about 5°C higher as compared with
underground temperature in the non-controlled area. Figure 3 shows the observation data at
the experimental field in Yokohama city from 27 May to 4 June 1997.

7. NUMERICAL EXAMPLES

One of the problems to be solved for practical usage is the treatment of boundary conditions.
The observation of temperature near the ground surface for the boundary condition is almost
impossible since many athletic activities are done on the field in the sport stadium. Therefore,
to observe directly the temperature at −3 cm is almost impossible. For this reason, it is
necessary that the boundary condition is predicted from the observation data within the
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Figure 2. Controlled and non-controlled areas.

restricted observation range. Heat transfer values on the ground surface are influenced by
various factors. To know the behavior of the heat transfer, heat flux must be introduced. As
for the treatment of the boundary condition in this problem, the Neumann-type boundary was
suitable compared with the Dirichlet condition. Adopting the Neumann condition for the
ground surface boundary, the treatment of the solar radiation can be introduced. Introducing
solar radiation, heat transfer on the ground surface can be described more clearly.

Using the heat flux, the heat transfer coefficient a and the solar radiation absorptivity g

should be known. Therefore, in this study the heat transfer coefficient and the solar radiation
absorptivity are identified by the extended Kalman filter. Using these identified parameters,
temperature at −3 cm has been determined. The temperature is used as the ground surface
boundary condition for the calculation of the ground temperature control system by means of
the standard Kalman filter.

For the identification, temperatures at −3, −5, −10, −15 and −30 cm, on the surface
of the pipe, the solar radiation and the open air temperature are used as the observation data.
For the estimation, identified parameters a and g are used to describe the temperature model.
Temperatures at −30 cm, the pipe, the open air temperature and the solar radiation are used
as the observation data.

7.1. Identification of the heat transfer coefficient and the solar absorpti6ity

Identification of the heat transfer coefficient a and the solar radiation absorbtivity g is
performed with the extended Kalman filter and the finite element method. The calculation is
iterated for the duration that the observation data are obtained.

In this study, relationships among a, g and rainfall are investigated. Figure 4 shows the
finite element mesh and arrangement of observation points. Table I shows the computation
conditions. As for the computation terms, from 21 to 24 May and from 17 to 20 June, it rained
more that 100 mm; from 26 to 29 May and from 12 to 15 June, it rained under 5 mm.
Calculations for four cases are performed. Figure 5 shows the rainfall for a day. Table II
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Figure 3. Observed data.

shows the identified heat transfer coefficient a and the solar radiation absorptivity g. As a
result of the identification, it is confirmed that a on rainy days is lower by about 10% than a

on sunny days, whereas g on sunny days is almost the same as g on rainy days.

7.2. Estimation of boundary temperature

In this study, using the identified parameters, which are the heat transfer coefficient a and
the solar radiation absorptivity g in the former study, the estimation of the boundary condition
for the ground temperature control system is performed by the standard Kalman filter and the
finite element method. Open air temperature, temperature at −30 cm, temperature on the
surface of the pipe and the solar radiation are used as the observation data. Figure 6 shows the
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Figure 4. Finite element mesh.

Table I. Computation conditions

Dt 15.0 min
2000000.0rCp

0.7Thermal conductivity b1

Thermal conductivity b2 0.3
0.015Thermal conductivity b3

10.0Initial value a0

Initial value g0 0.8
0.05System noise Q
0.01Observation noise R

Figure 5. Rainfall.

Table II. Identified parameters

Terms ā ḡ

21.3 0.5721–24 May (rainy days)
26–29 May (sunny days) 23.2 0.57

23.412–15 June (sunny days) 0.59
21.0 0.5817–20 June (rainy days)
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Figure 6. Finite element mesh.

finite element mesh, observation points and estimation points. Figure 7 shows the estimated
temperature compared with the observed temperature at −3 cm deep. Both are in good
agreement.

7.3. Prediction of boundary temperature

Moreover, using the estimated values in Figure 7, a prediction is carried out. The maximum
degree of the autoregression M is 288, which is equal to 3 days. The prediction is started from
the 289th step in Figure 8. Where Dt is 15 min, therefore the 12th, 24th, 48th and 96th step
represent 3, 6, 12 and 24 h. The calculation is performed at every prediction step j in Equations
(44) and (45), where j denotes the prediction for j steps ahead. In this analysis, calculations of
prediction ( j=12, 24, 48, 96) are carried out. Figure 8 shows predicted values in this study
and observed data that are observed directly in the experiment. In Figure 8, the result of
prediction for 12, 24 and 48 steps ahead are good agreement with the observed values.
Contrary to this, about 98 steps ahead, a change of temperature between daytime and
night-time is not obtained.

Figure 7. Estimated temperature.
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Figure 8. Predicted value.

8. CONCLUDING REMARKS

This paper has discussed (1) that the heat transfer coefficient a and the solar radiation
absorptivity g are identified by the extended Kalman filter and the finite element method and
(2) that using these parameters, the boundary condition for the ground temperature control
system is estimated and predicted by the Kalman filter and the finite element method. The
Kalman filter is one of the estimation methods based on the stochastic process. The extended
Kalman filter is also one of the identification methods based on the stochastic process.
Calculations based on these methods are carried out by considering two kinds of noises: system
and observation noises. It is very difficult to physically observe the data used in the calculation
due to on going athletic activities in the stadium. It is nearly impossible to observe the
temperature near the ground surface area (from 0 cm to −20 cm). Therefore, properties of the
heat transfer coefficient and the solar radiation absorptivity must be computed almost the
same way as applied to thermal conductivity b [1,2].

As for the estimation of the boundary condition, good estimated results are obtained within
the limited observation area. The estimation using the standard Kalman filter is suitable for
the on-line estimation for the operation of the ground temperature control system.

As for the prediction, the autoregressive model and the Kalman filter are applied. In the
calculation of the autoregressive model, in order to determine the optimal degree m, the
Akaike information criterion (AIC) is used. Numerical results are dependent on the maximum
degree M, which is a total number of observation data for the calculation of the prediction and
the optimal degree m that minimizes the value of AIC in large amounts. Therefore, the
interaction between M and AIC(m) should be investigated thoroughly.
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